p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses.
نویسندگان
چکیده
Dysfunctional telomeres limit cellular proliferative capacity by activating the p53-p21- and p16(INK4a)-Rb-dependent DNA damage responses (DDRs). The p16(INK4a) tumor suppressor accumulates in aging tissues, is a biomarker for cellular senescence, and limits stem cell function in vivo. While the activation of a p53-dependent DDR by dysfunctional telomeres has been well documented in human cells and mouse models, the role for p16(INK4a) in response to telomere dysfunction remains unclear. Here, we generated protection of telomeres 1b p16-/- mice (Pot1bΔ/Δ;p16-/-) to address the function of p16(INK4a) in the setting of telomere dysfunction in vivo. We found that deletion of p16(INK4a) accelerated organ impairment and observed functional defects in highly proliferative organs, including the hematopoietic system, small intestine, and testes. Pot1bΔ/Δ;p16-/- hematopoietic cells exhibited increased telomere loss, increased chromosomal fusions, and telomere replication defects. p16(INK4a) deletion enhanced the activation of the ATR-dependent DDR in Pot1bΔ/Δ hematopoietic cells, leading to p53 stabilization, increased p21-dependent cell cycle arrest, and elevated p53-dependent apoptosis. In contrast to p16(INK4a), deletion of p21 did not activate ATR, rescued proliferative defects in Pot1bΔ/Δ hematopoietic cells, and significantly increased organismal lifespan. Our results provide experimental evidence that p16(INK4a) exerts protective functions in proliferative cells bearing dysfunctional telomeres.
منابع مشابه
Loss of p16Ink4a Function Rescues Cellular Senescence Induced by Telomere Dysfunction
p16(Ink4a) is a tumor suppressor and a marker for cellular senescence. Previous studies have shown that p16(Ink4a) plays an important role in the response to DNA damage signals caused by telomere dysfunction. In this study, we crossed Wrn(-/-) and p16(Ink4a-/-) mice to knock out the p16(Ink4a) function in a Wrn null background. Growth curves showed that loss of p16(Ink4a) could rescue the growt...
متن کاملSignificant Role for p16INK4a in p53-Independent Telomere-Directed Senescence
Telomere attrition in primary human fibroblasts induces replicative senescence accompanied by activation of the p53 and p16(INK4a)/RB tumor suppressor pathways. Although the contribution of p53 and its target, p21, to telomere-driven senescence have been well established, the role of p16(INK4a) is controversial. Attempts to dissect the significance of p16(INK4a) in response to telomere shorteni...
متن کاملSenescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres.
Cellular senescence is a phenotype that is likely linked with aging. Recent concepts view different forms of senescence as permanently maintained DNA damage responses partially characterized by the presence of senescence-associated DNA damage foci at dysfunctional telomeres. Irradiation of primary human dermal fibroblasts with the photosensitizer 8-methoxypsoralen and ultraviolet A radiation (P...
متن کامل53BP1 deficiency combined with telomere dysfunction activates ATR-dependent DNA damage response
TRF1 protects mammalian telomeres from fusion and fragility. Depletion of TRF1 leads to telomere fusions as well as accumulation of γ-H2AX foci and activation of both the ataxia telangiectasia mutated (ATM)- and the ataxia telangiectasia and Rad3 related (ATR)-mediated deoxyribonucleic acid (DNA) damage response (DDR) pathways. 53BP1, which is also present at dysfunctional telomeres, is a targe...
متن کاملSenescence and immortality in hepatocellular carcinoma.
Cellular senescence is a process leading to terminal growth arrest with characteristic morphological features. This process is mediated by telomere-dependent, oncogene-induced and ROS-induced pathways, but persistent DNA damage is the most common cause. Senescence arrest is mediated by p16(INK4a)- and p21(Cip1)-dependent pathways both leading to retinoblastoma protein (pRb) activation. p53 play...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 123 10 شماره
صفحات -
تاریخ انتشار 2013